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Abstract

Vocal fold (VF) motion is a fundamental process in voice production, and is also

a challenging problem for direct numerical computation because the VF dynamics

depend on nonlinear coupling of air flow with the response of elastic channels (VF),

which undergo opening and closing, and induce internal flow separation. A traditional

modeling approach makes use of steady flow approximation or Bernoulli’s law which

is known to be invalid during VF opening. We present a new hydrodynamic semi-

continuum system for VF motion. The airflow is modeled by a quasi-one dimensional

continuum aerodynamic system, and the VF by a classical lumped two mass system.

The reduced flow system contains the Bernoulli’s law as a special case, and is derivable

from the two dimensional compressible Navier-Stokes equations. Since we do not

make steady flow approximation, we are able to capture transients and rapid changes

of solutions, e.g. the double pressure peaks at opening and closing stages of VF

motion consistent with experimental data. We demonstrate numerically that our

system is robust, and models in-vivo VF oscillation more physically. It is also much

simpler than a full two-dimensional Navier-Stokes system.

PACS numbers: 43.70Bk, 43.28Ra, 43.28Py, 43.40Ga.
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1. INTRODUCTION

Vocal folds (VF) are the source of the human voice, and their motion is a fundamental

process in speech production. In recent years, mathematical modeling of vocal folds has been

pursued as a viable alternative to direct experimental studies using strobovideolaryngoscopy

or electroglottography techniques. Numerical simulations of VF models then provide us

with a valuable tool to understand, monitor and predict various behaviors of normal and

disordered voices in vivo. Together with models of vocal tract, one can construct a voice

simulator which clinicians, speech therapists, voice teachers, and otolaryngologists can use

to help with their skill improvement, diagnosis and patient treatment.

Since VF motion is mechanical and results from the nonlinear interaction of airflow

and elastic response of VF, partial differential equations (PDEs) can be written down from

classical continuum mechanics based on our knowledge of VF structures and air flow char-

acteristics. However, the complexity involved is daunting, both in terms of airflow and VF

structure, for a direct simulation of a complete set of governing equations. Also it is not

necessary that one needs all the details of such a solution to describe the main VF properties.

Modeling effort is required to build a smaller set of equations that can capture the essential

features of VF dynamics. In the past decade, much progress has been made in modeling

the elastic aspect of VF. There are by now a hierarchy of elastic models for VF, from the

two mass model of Ishizaka and Flanagan1, Bogaert2, to 16 mass as well as the continuum

model of Titze and coworkers3,5–7. However, the modeling of airflow or the fluid aspect of

VF is much less explored.

There are broadly two types of approaches in treating the glottal flow. One approach

is to combine the Bernoulli’s law in the bulk of the flow (steady flow approximation) with

empirical formulas in boundary layer, flow separation and wake1–3,8. This approach over-

simplifies the flow in the sense that PDEs are approximated by algebraic equations.

Though the approach is a working method for building simple models, it clearly introduces
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drastic approximations. For example, it was realized9 and concluded10 that Bernoulli’s law

is not valid during one-fifth of the VF vibration cycle, especially at VF opening and clo-

sure. This lack of accuracy as a result of deviating significantly from the original PDEs is a

major drawback of the empirical approach. The other approach is to directly simulate the

two dimensional Navier-Stokes (NS) system. Two dimensionality is a common assumption

for vocal flows8. Alipour et al. formulated a steady state simulation with a given glottal

geometry11. Both8,11 appeared to have been done for fixed channel shape, or in other words,

in-vitro VF. To accurately model the pulsating nature of the flow during VF vibration how-

ever, a time dependent solution is more appropriate. Yet in such a case, it is highly difficult

to resolve the flows in the presence of moving boundaries, closures, and flow separation.

Existing works are few in this direction although a lot of measurements on the flow char-

acteristics such as intraglottal air pressure and flow velocity have been made, by Titze and

others8,10,16,12–15,11,17.

The current status of flow modeling calls for a systematic study of reduced PDE flow

models and their coupling with existing elastic models. In this paper, we develop an inter-

mediate in-vivo PDE model system so that original airflow PDEs are approximated

by reduced PDEs, not algebraic equations. Consider for now that the two sides of

VF are symmetric to each other across the centerline, the methodology could be extended

to the asymmetric case. The air flow is modeled by a quasi-one dimensional (vertical or up-

ward direction) system of flow equations. The flow variables (pressure, velocity, density) are

averaged quantities over the channel cross section of the corresponding ones in two dimen-

sional NS system. Assuming that the flow is predominantly in the vertical direction, which

is reasonable before flows become turbulent in the exit region, we derive the model flow

system from the two dimensional isentropic compressible Navier-Stokes equations, see the

appendix, also18. If the channel is not changing in time, the system reduces to the familiar

quasi-one dimensional gas dynamic equations in studying duct flows in aerodynamics19–22.

If the channel varies in time, there is an additional source term in the flow momentum equa-
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tion, which turns out to be essential for drawing connection with the Titze theory of small

VF oscillation23. One can regard the reduced airflow system as a coarse-grained NS system

which contains the Bernoulli’s law as a special case, and inherits time dependent convection

mechanisms from the full two dimensional NS system. The advantage is that the system is

able to handle time dependent effects, such as rapid pressure and velocity changes, during

VF opening and closing; moreover, it is a lot simpler to simulate numerically because all the

unknown dependent variables are one dimensional in space. Such a system will be coupled

to an improved two mass model2 for the VF cross section area to form a complete VF model.

The VF cross section area appear as variable coefficients in the quasi-one dimensional air

flow system. The VF motion is described by how VF cross section area varies in time.

The rest of the paper is organized as follows. In section 2, we introduce the equations of

the model, and address related modeling issues. In section 3, we discuss numerical method

and numerical results of model simulation. We show numerically that our model is able

to generate VF motion in-vivo, and recover several known VF characteristics supported by

experimental measurements, for example, unequal double pressure peaks at VF opening

and closure. We also show the robustness of our model by varying subglottal pressure and

plotting how air volume velocity (air flux) changes as a function of time. Our results reach

complete qualitative agreement with existing VF flow data. The conclusion is in section

4, and acknowledgement in section 5. Section 6 is the appendix on the derivation of our

reduced flow model from the two dimensional compressible Navier-Stokes system. Table 1,

figure captions and figures follow the references.

2. THE SEMI-CONTINUUM MODEL

Suppose the larynx is a two dimensional channel with a finite mass elastic wall of cross

section width A(x, t), and length 2L. The vocal fold is lumped into a sum of two masses

connected by a spring, and each mass is connected to solid wall by a spring and a damper,

the classical scenario in the two mass model1,2. The air flows from x = −L to x = L, and is
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modeled by the quasi-one dimensional system derived in18:

• conservation of mass:

(Aρ)t + (ρ uA)x = 0, (2.1)

ρ air density, u air velocity;

• reduced momentum equation:

(ρuA)t + (ρu2A)x = −(pA)x + Axp + ρuAt, (2.2)

p air pressure.

Assuming that the temperature is maintained as constant, so the airflow is isothermal,

then the equation of state is:

p = a2ρ, (2.3)

where a is the speed of sound. The cross section width A is a piecewise linear function in

x determined by the locations of the two masses (y1, y2), in the classical two-mass model

system (Bogaert2, Ishizaka and Flanagan1):

m1y
′′
1 + r1y

′
1 + k1(y1 − y0,1) + k12(y1 − y2 + y0,12) = F1, (2.4)

m2y
′′
2 + r2y

′
2 + k2(y2 − y0,2) + k12(y2 − y1 − y0,12) = 0, (2.5)

where F1 = Lg
∫ xs
−L p dx, Lg the transverse (to the flow) dimension of vocal fold; yi’s are

VF openings at locations xi’s, −L < x1 < L = x2; xs = x2 if there is no flow separation,

and xs = the location of flow separation if it occurs. The mi, ri, ki, i = 1, 2, are mass

density, damping and elastic spring constants. Mass one (lower mass) is situated near the

VF entrance, and mass two (upper mass) is located towards the exit of the glottal region.

Following Bogaert2, xs will be estimated by an empirical formula on the degree of divergence

of the VF. Our complete VF model is the coupled system (2.1)-(2.5).

To make the paper self-contained, the derivation of (2.1)-(2.2) is included in the appendix.

The flow variables in the quasi-one dimensional system are averages over the channel cross
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section of the corresponding ones in two-dimensional flows. The viscous effect in the flow

produces the term ρuAt from the no-slip boundary condition of the two-dimensional flows.

Without this term, the above system is a familiar one used in gas dynamics (see21,19,20,22

and references therein) for modeling flows through ducts with variable cross section. It is

shown18 that this extra term is critical in transferring energy from airflow into the VF, as

the Titze theory23 predicted. We have ignored the viscous terms in the momentum equation

for simplicity, they appear to be higher order.

Two mass model (2.4)-(2.5) is a recent improvement2 of the original IF721 in that flow

separation point is not always at the VF exit, instead it depends on the glottal geometry.

Flow separation basically refers to a change of flow behavior from being attached to the

VF cover via a viscous boundary layer to a developed free jet with vortical structures and

turbulent wake. Because of the vortical buildup, pressure near the wall is typically low, and

can be approximated by setting it to zero (or ambient pressure) as done on mass two in (2.5)

when there is no vocal tract. In converging glottis, there is no flow separation, however in

diverging glottis, it occurs if the diverging angle is large enough. It is as yet a challenging

problem (no simple theoretical prediction) to decide for a flow when and where separation

occurs. It is expedient for modeling purpose to adopt a working hypothesis supported by

experiments2,8:

y2/y1 < 1.1 =⇒ xs = x2, (2.6)

y2/y1 > 1.1 =⇒ xs = x1 +
(x2 − x1)y1

10(y2 − y1)
, ys = 1.1y1. (2.7)

Notice that the flow separation location is a variable depending on the diverging angle. It is

worth pointing out that the assumptions we made for deriving the reduced flow model are

all valid prior to the separation point. We expect to see a deviation after the flow separation

point between the reduced flow model and the fully two dimensional NS solutions; however,

flow pressure post separation is not used in (2.5). Thus our reduced flow model matches

perfectly with the improved two-mass model2.

We also adopt the elastic collision (stopping) criterion in1,2 when the two sides of VF
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approach each other and close. When yi’s are smaller than a critical level yc, then VF is

considered closed. Following1,2, (mi, ri, ki) (i = 1, 2) are adjusted to closure values. In this

case, the flow equations are solved only over x ∈ [−L, x1], and in (2.4)-(2.5) the pressure

force is adjusted to F1 = Lg
∫ x1
−L p dx. Due to constant input pressure p0, pressure at x1 builds

up. The two mass ODE’s (ordinary differential equations) are still running even during VF

closure, and in due time the increased pressure reopens VF.

The VF model system is posed as an initial boundary value problem on x ∈ [−L,L],

with inlet boundary condition (ρ, u)(−L, t) = (ρ0, u0), and a zero Neumann type boundary

condition at exit (ρx, ux)(L, t) = 0. The advantage of such Neumann type boundary condi-

tions is that it helps the flow to go out of the computational domain, which is needed for a

stable numerical method free of numerical boundary artifacts. Our numerical experiments

suggest that the above treatment works fine.

The major difference between our model and that of Bogaert2 is that we do not make

quasi-steady approximation on the flow variables, instead we integrate time dependent sys-

tem (2.1)-(2.2). This turns out to be particularly important for capturing transients near

closure and reopening stages of VF motion.

It is helpful to put the system (2.1)-(2.2) into a rescaled form. Let v = u/a, a the speed

of sound. Then:

1

a
(Ap)t + (pvA)x = 0,

1

a
(pvA)t + (pv2A)x = −(pA)x + Axp+ pvAt/a, (2.8)

where typically v = u/a ≈ 0.1, the Mach number. If we use the convenient cm-g-ms unit,

a = 35 cm/ms, 1/a is a small parameter. If we ignore the terms with a, we have exactly

Bernoulli’s law for steady flows. However, these seemingly small terms are essential especially

during opening stage of VF, and should be kept for an accurate time-dependent solution.
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3. NUMERICAL METHOD AND SIMULATION RESULTS

For given VF shape, A(x, t), the flow system (2.1)-(2.2) is of the form:

Ut + (F (U))x = G(U), (3.1)

so called conservation law (see24 and references therein) with lower order source term G.

The function F is the flux function. We implemented a first order finite difference method,

where time marching is split into two steps. In the first step (t = nk → (n+ 1
2
)k), we solve

the conservation law Ut + (F (U))x = 0 with explicit Lax-Friedrichs method24:

U
n+ 1

2
j =

1

2
(Un

j−1 + Un
j+1) − k

2h

(
F (Un

j+1)− F (Un
j−1)

)
, (3.2)

where k and h are time step and spatial grid size. Here k must be small enough to ensure

stability of the difference scheme and to keep the computed flow velocity positive (no back

flow is allowed). In step two (t + k
2
→ t + k), we update the solution from Un+ 1

2 to Un+1

by implicitly integrating ODEs: Ut = G(U) in flow equations, and the two mass equations

(2.4)-(2.5); where we apply central differencing in space and backward differencing in time.

In the first step, U is updated using VF shape A at time t = nk; in the second step, the

ODEs from two mass system and source terms are solved to update solutions to (n + 1)k.

We point out that when VF approach closure, the ODE’s in step two become rather stiff,

and this is the main reason to use implicit backward differencing in time25. The time step

k is a variable. It is smaller when VFs are closing and the equations are stiff, and is larger

when VFs are opening up.

The parameters used in our calculation are: space grid size h = 0.01125, variable time

step k ∈ (10−6, 10−4). The time unit is ms, length unit cm, 2L = 0.225 cm, speed of sound

a = 35 cm/ms, u0 = 4 cm/ms, p0 = 7840 dynes cm−2. Other two mass model parameters

are in Table 1. In runs not shown, we have reduced h to half or even smaller sizes, and

observed similar findings as reported below.
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Now we describe our numerical results, and compare with figures in the literature or

those from experimental measurements. In Figure 1, we show a comparison of a cycle of

VF vibration. The left column is the figure on page 113 of Sataloff’s Scientific American

article26, the right column is a plot of our numerically simulated VF vibration cycle. The

resemblance is clear. A web animation is also available27.

In Figure 2, we show our computed air volume velocity (air flux) at the exit of VF, which

compares well with Fig 6, Fig 7, Fig 8 of Story and Titze3. Notice that the airflux goes

down to zero gradually at VF closing then drops down abruptly to zero. The drop is due to

the cutoff introduced in the two mass model for closure, the yc. Below yc, the cross section

area A becomes very small, and the flow calculation becomes rather stiff. In other runs (not

shown), we have observed that increasing yc will shorten the curved portion and straighten

up the plot near closures (t ≈ 6, 21, 36 ms). The air volume velocity shows asymmetry,

steeper on the right side than on the left side, consistent with Fig. 3b of Titze23.

Figure 3 is the experimentally measured intraglottal pressure on an excised canine larynx

from12 (Fig. 8 there) and13, which showed the double peak (intraglottal) pressure structure

respectively at VF opening and closing. Figure 4 is our computed pressure at the grid point

before lower mass. The double peaks are present and resemble well those in Figure 3, only

that ours are steeper and higher. Several factors contribute to the difference: (1) we used

inviscid flow model while there was physical air viscosity in experiments that smooth the

solutions, (2) the closure treatment of two mass model differs from the actual VF closure,

(3) Figure 3 plots the pointwise pressure, not an average pressure over glottis. At the

qualitative level however, our model solutions are in full agreement with the experimental

finding. Notice that the second peak is lower than the first.

To the best of our knowledge, the experimentally observed unequal double pressure

peaks12,13, have not been computed previously in a VF model without coupling to vocal

tract. The experiment had no vocal tract load. In Story and Titze3, a computed two peak

10



intraglottal pressure plot was given (see Fig 113) using their three mass VF model; however,

there is additional coupling to vocal tract or an additional subglottal system. Also their

computed second peak appeared higher than the first peak. The fact that our model can

recover the experimental double pressure peaks renders strong support for its validity and

value.

We also tested our model robustness under pressure variation. In Figure 5, we show a

plot of air volume velocity vs time at VF exit for three subglottal pressures: 1584 Pa, 1984

Pa, 2384 Pa with other parameters same as in Table 1. We see that as subglottal pressures

increase with other parameters fixed, air volume velocity curves get higher (at peaks) and

steeper (at two sides). This agrees very well with Fig. 2.14(a), page 78, of K. Stevens17,

and is another strong support for our model.

In Figure 6, we show an air particle velocity at VF exit (after upper mass) over three

vibration cycles for subglottal pressure 2384 Pa, which agrees qualitatively with Fig 3c, page

1538, of Titze23. For Figure 6, a small amount of additional numerical diffusion is added in

(2.1)-(2.2).

4. CONCLUDING REMARKS

In this paper, we introduced a new semi-continuum VF model consisting of a reduced PDE

flow system18 and a recent two mass elastic system2. The flow part of the model is more

physical than a traditional treatment with Bernoulli’s law yet much simpler than a full two

dimensional Navier-Stokes system. The reduced PDEs are derivable from the two dimen-

sional compressible Navier-Stokes system, and are much more economical for computation.

We demonstrated numerically that the model solutions are in qualitative agreement with

known VF experimental measurements. In future work, we plan to couple the flow model

with more physiological elastic VF models, such as3; compute with higher order finite dif-

ference methods24 for attaining more accuracy; analyze qualitative properties (phonation
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thresholds) of model solutions using bifurcation methods; and incorporate additional vis-

cous effects in the flow.
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6. APPENDIX: DERIVATION OF REDUCED FLOW SYSTEM

We derive the fluid part of the model system assuming that the fold varies in space and time

as A = A(x, t). Consider a two dimensional slightly viscous subsonic air flow in a channel

with spatially temporally varying cross section in two space dimensions, Ω0 = Ω0(t) =

{(x, y) : x ∈ [−L,L], y ∈ [−A(x, t)/2, A(x, t)/2]}, where A(x, t) denotes the channel width

with a slight abuse of notation, or cross sectional area since the third dimension is uniform.

The two dimensional Navier-Stokes equations in differential form are (Batchelor28, page

147):

• conservation of mass:

ρt + ∇ · (ρ ~u) = 0; (6.1)

• conservation of momentum:

(ρ~u)t = −∇ · (ρ (~u ⊗ ~u)) + div(σ · ~n ); (6.2)

where σ is the stress tensor, σ = (σij) = −pδij + dij, and:

dij = 2µ (eij −
div~u

3
δij), eij =

1

2
(ui,xj + uj,xi), (x1, x2) ≡ (x, y);

µ is the fluid viscosity; Ω(t) is any volume element of the form: (~u = (u1, u2))

Ω(t) = {(x, y) : x ∈ [a, b] ⊂ [−L,L], y ∈ [−A(x, t)/2, A(x, t)/2].}. (6.3)
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The equation of state is either polytropic or isothermal.

The boundary conditions on (ρ, ~u) are:

(1) on the upper and lower boundaries y = ±A(x, t)/2, ρy = 0, and ~u = (0,±At/2), the

velocity no slip boundary condition;

(2) at the inlet, x = −L, p = p0, given subglottal pressure, (u1, u2) = (u1,0, u2,0), given input

flow velocity. At the exit. (p, u1, u2)x = 0, to help the waves go out of the domain freely.

We are only concerned with flows that are symmetric in the vertical. For positive but

small viscosity, the flows are laminar in the interior of Ω0 and form viscous boundary layers

near the upper and lower edges. The vertically averaged flow quantities are expected to

be much less influenced by the boundary layer behavior as long as A(x, t) is much larger

than O(µ1/2). We also ignore effects of possible flow seperation inside Ω0 when it becomes

divergent with large enough opening.

Let us assume that the flow variables obey:

|u1,y| � |u1,x|, |u2,y| � |u1,x|, away from boundaries of Ω0,

|~uy| � |~ux|, near the boundaries of Ω0,

|ρy| � |ρx|, throughout Ω0. (6.4)

These are consistent with physical observations in the viscous boundary layers (Batchelor28,

page 302), namely, there are large vertical velocity gradients, yet small pressure or density

gradients in the boundary layers. The boundary layers are of width O(µ1/2). Denote by ρ, u1,

the vertical averages of ρ and u1. Note that the exterior normal ~n = (−Ax/2, 1)/(1+A2
x/4)1/2

if y = A/2, ~n = (−Ax/2,−1)/(1 + A2
x/4)1/2 if y = −A/2.

Let a = x, b = x+ δx, δx� 1, t slightly larger than t0. We have:

d

dt

∫
Ω(t)

ρ dV =
d

dt

∫
Ω(t0)

ρ J(t) dV =
∫

Ω(t0)
ρt J(t) dV +

∫
Ω(t0)

ρ Jt dV, (6.5)

where J(t) is the Jacobian of volume change from a reference time t0 to t. Since Ω(t) is now

a thin slice, J(t) = A(t)
A(t0)

for small δx, and Jt = At(t)/A(t0). The second integral in (6.5) is:∫
Ω(t0)

ρ Jt dV = ρ
At(t)

A(t0)
A(t0)δx = ρAt(t)δx. (6.6)
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The first integral is simplified using (6.1) as:

∫
Ω(t0)

ρt J(t) dV =
∫

Ω(t)
ρt dV = −

∫
∂Ω(t)

ρ ~u · ~n dS. (6.7)

We calculate the last integral of (6.7) further as follows:

∫
∂Ω
ρ~u · ~n ds =

∫ A/2

−A/2
(−ρu1)(x, y, t) dy +

∫ A/2

−A/2
(ρu1)(x+ δx, y, t) dy

+
∫ x+δx

x
ρ · (0, At/2) · (−Ax/2, 1) dx

+
∫ x+δx

x
ρ · (0,−At/2) · (−Ax/2,−1) dx

= ρu1A|x+δx
x +

δx

2
(ρAt)|y=A/2 +

δx

2
(ρAt)|y=−A/2 +O((δx)2)

≈ (ρ · u1A)|x+δx
x + ρAtδx+O((δx)2), (6.8)

where we have used the smallness of ρy to approximate ρ|y=±A/2 by ρ and ρu1 by ρ · u1.

Combining (6.5)-(6.7), (6.8) with:

d

dt

∫
Ω
ρ dV = (ρAδx)t + O((δx)2), (6.9)

dividing by δx and sending it to zero, we have:

(ρA)t + (ρ · u1A)x = 0,

which is (2.1).

Next consider i = 1 in the momentum equation, a = x, b = x + δx. We have similarly

with (2.6):

d

dt

∫
Ω(t)

ρ u1 dV =
∫

Ω(t)
(ρu1)t dV +

∫
Ω(t0)

ρ u1 Jt dV

= −
∫
∂Ω(t)

ρu1~u · ~n dS +
∫
∂Ω(t)

σ1,j · ~nj dS + ρ u1 At δx+O(δx2). (6.10)

We calculate the integrals of (6.10) below.

d

dt

∫
Ω
ρu1 dV = (ρu1A)tδx + O((δx)2) ≈ (ρ · uA)t · δx + O((δx)2). (6.11)

Using u1 = 0 on the upper and lower boundaries, a similar calculation as (6.8) gives:
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∫
∂Ω
ρu1~u · ~n dS = (ρ · u2

1A)|x+δx
x + O(δx µ1/2), (6.12)

where the smallness of u1,y in the interior and small width of boundary layer O(µ1/2) gives

the O(µ1/2) for approximating u2
1 by u1 · u1.

Remark 6.1 Notice that for inviscid flows, we would have an additional term ρ u1 At δx,

which would cancel the third term on the right hand side of (6.10). As a result, the At u/A

term would be absent from the momentum equation (2.2).

Let us continue to calculate:

∫
∂Ω
−pδ1,jnjdS ≈ −pA|x+δx

x +
∫ x+δx

x
pAx dx

= −pA|x+δx
x + pAx δx+O((δx)2).

Noticing that:

d11 = 2µ(u1,x − (u1,x + u2,y)/3), d12 = 2µ(u1,y + u2,x).

It follows that

d11 =
4

3
µu1,x −

2µAt
3A

.

Thus the contribution from the left and right boundaries located at x and x+ δx is:

∑
l,r

∫
l,r
d11n1 = Ad11|x+δx

x =
4

3
Aµu1,x|x+δx

x − 2µAt
3
|x+δx
x . (6.13)

The contribution from the upper and lower boundaries is:

∑
±

∫
y=±A/2

d11 n1 dS = −d11Axδx/2|y=A/2 − d11Axδx/2|y=−A/2

= µδx
∑
±
O(∂y~u)|y=±A/2. (6.14)

Similarly,

∑
±

∫
y=±A/2

d12n2 dS = µδx
∑
±
O(∂y~u)|y=±A/2. (6.15)
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Since ∂y~u|y=±A/2 = O(µ−1/2), the viscous flux from the boundary layers are O(δxµ1/2),

much larger than the averaged viscous term δ x 4µ
3

(Au1x)x = O(δ x µ). We notice that the

vertically averaged quantities have little dependence on the viscous boundary layers unless A

is on the order O(µ1/2). Hence the quantities from upper and lower edges in (6.14) and (6.15),

and that in (6.12), should balance themselves. Omitting them altogether, and combining

remaining terms that involve only u1, ρ in the bulk, we end up with (after dividing by δx

and sending it to zero):

(ρ · u1A)t + (ρ · u1
2A)x = −(pA)x + Axp + ρ u1 At +

4µ

3
(Au1x)x − 2µAtx/3, (6.16)

which gives (2.2) in the inviscid limit µ→ 0.
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TABLES

Table 1. Two Mass Model Parameters in cgs Unit.

m1 0.17 g

m2 0.03 g

x2 − x1 0.2 cm

x1 + L 0.025 cm

k1,open 45 kdynes

k1,closed 180 kdynes

y0,1 0 cm

k2,open 8 kdynes

k2,closed 32 kdynes

y0,2 0.0 cm

k12 25 kdynes

y0,12 0 cm

yc 0.001 cm

A(-L,t) 2 cm

r1,open 17.5 dynes/(cm s)

r1,closed 192.4 dynes/(cm s)

r2,open 18.6 dynes/(cm s)

r2,closed 49.6 dynes/(cm s).

20



FIGURES

Fig. 1. VF Vibration: left column — p. 113 of Sataloff26, right column — simulated VF with

our model (2.1)-(2.5).

Fig. 2. Simulated VF volume velocity (air flux, cm3/ms ) vs time at exit of VF from model

(2.1)-(2.5).

Fig. 3. Experimentally measured intraglottal pressure on excised canine larynx, see Fig. 8 on

page 426 of Titze12.

Fig. 4. Computed pressure (105 Pa) change in time at the point right before lower mass.

Fig. 5. The computed air volume velocity for three values of subglottal pressures.

Fig. 6. The computed air particle velocity vs. time.
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